首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22203篇
  免费   4436篇
  国内免费   5908篇
测绘学   1995篇
大气科学   4109篇
地球物理   5561篇
地质学   11773篇
海洋学   3107篇
天文学   772篇
综合类   2291篇
自然地理   2939篇
  2024年   86篇
  2023年   417篇
  2022年   1181篇
  2021年   1335篇
  2020年   1119篇
  2019年   1251篇
  2018年   1440篇
  2017年   1297篇
  2016年   1399篇
  2015年   1220篇
  2014年   1493篇
  2013年   1488篇
  2012年   1505篇
  2011年   1534篇
  2010年   1576篇
  2009年   1385篇
  2008年   1287篇
  2007年   1131篇
  2006年   959篇
  2005年   837篇
  2004年   678篇
  2003年   612篇
  2002年   564篇
  2001年   640篇
  2000年   615篇
  1999年   825篇
  1998年   659篇
  1997年   617篇
  1996年   571篇
  1995年   474篇
  1994年   463篇
  1993年   405篇
  1992年   343篇
  1991年   227篇
  1990年   185篇
  1989年   162篇
  1988年   136篇
  1987年   91篇
  1986年   71篇
  1985年   54篇
  1984年   39篇
  1983年   34篇
  1982年   35篇
  1981年   17篇
  1980年   21篇
  1979年   17篇
  1978年   9篇
  1977年   5篇
  1958年   12篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
951.
The northwestern Pacific(NWP) is a fog-prone area, especially the ocean east of the Kuril Islands. The present study analyzes how the Pacific–Japan(PJ) teleconnection pattern influences July sea fog in the fog-prone area using independent datasets. The covariation between the PJ index and sea fog frequency(SFF) index in July indicates a close correlation, with a coefficient of 0.62 exceeding the 99% confidence level. Composite analysis based on the PJ index, a case study, and model analysis based on GFDL-ESM2 M, show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave, which propagates northward to maintain an anticyclonic anomaly in the midlatitudes,indicating a northeastward shift of the NWP subtropical high. The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere, and strengthens the horizontal southerly moisture transportation from the tropical–subtropical oceans to the fog-prone area. On the other hand, a greater meridional SST gradient over the cold flank of the Kuroshio Extension, due to ocean downwelling, is produced by the anticyclonic wind stress anomaly. Both of these two aspects are favorable for the warm and humid air to cool, condense, and form fog droplets, when air masses cross the SST front. The opposite circumstances occur in low PJ index years, which are not conducive to the formation of sea fog. Finally, a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030 s, implying a possible decline of the SFF in this period.  相似文献   
952.
The summer Asian–Pacific Oscillation(APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models(BCC CSMs) with different horizontal resolutions, i.e., BCC CSM1.1 and BCC CSM1.1(m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated.The results show that BCC CSM1.1(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC CSM1.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC CSM1.1(m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC CSM1.1(m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC CSM1.1.  相似文献   
953.
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin(YRB) during July11–13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau(TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July(temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TP. The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence/convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.  相似文献   
954.
Based on observational precipitation at 63 stations in South China and NCEP NCAR reanalysis data during 1951 2010,a cluster analysis is performed to classify large-scale circulation patterns responsible for persistent precipitation extremes(PPEs) that are independent of the influence of tropical cyclones(TCs).Conceptual schematics depicting configurations among planetary-scale systems at different levels are established for each type.The PPEs free from TCs account for 38.6%of total events,and they tend to occur during April August and October,with the highest frequency observed in June.Corresponding circulation patterns during June August can be mainly categorized into two types,i.e.,summer-Ⅰ type and summer-Ⅱtype.In summer-Ⅰ type,the South Asian high takes the form of a zonal-belt type.The axis of upstream westerly jets is northwest-oriented.At the middle level,the westerly jets at midlatitudes extend zonally.Along the southern edge of the westerly jet,synoptic eddies steer cold air to penetrate southward;the Bay of Bengal(BOB) trough is located to the north;a shallow trough resides over coastal areas of western South China;and an intensified western Pacific subtropical high(WPSH) extends westward.The anomalous moisture is mainly contributed by horizontal advection via southwesterlies around 20°N and southeasterlies from the southern flange of the WPSH.Moisture convergence maximizes in coastal regions of eastern South China,which is the very place recording extreme precipitation.In summer-Ⅱ type,the South Asian high behaves as a western-center type.The BOB trough is much deeper,accompanied by a cyclone to its north;and a lower-level trough appears in northwestern parts of South China.Different to summer-Ⅰ type,moisture transport via southwesterlies is mostly responsible for the anomalous moisture in this type.The moisture convergence zones cover Guangdong,Guangxi,and Hainan,matching well with the areas of flooding.It is these set combinations among different systems at different levels that trigger PPEs in South China.  相似文献   
955.
956.
957.
958.
959.
960.
Both 1981 and 2013 were weak La Niña years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the western Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号